
P a g e | 1

FALLOUT 2 MODDING GUIDE V1.01

By Ray

P a g e | 2

Table of Contents

Getting Started 3

Installing Patches and Updating Fallout 2 ... 3

Extracting and Exploring Files For Modding .. 7

Fallout 2 Programming 8

Using the Script Source Files ... 8

Layout .. 8

Variables .. 12

Booleans and Operators .. 13

Macros and Commands ... 14

Compiling ... 15

Creating an NPC 16

Mary (Part 1) ... 16

Consistent Dialog ... 18

Dialog .msg Files .. 19

Dialog .int Files .. 20

Customizing Dialog Files and Procedures .. 21

Mary (Part 2) ... 22

Quests on the Pip-Boy ... 30

Mary (Part 3) ... 31

NPC Checklist 40

Credits 44

P a g e | 3

Getting Started

This guide is everything that Iôve found helpful on the
internet from many people and places. Most of this
information is found in the Fallou t 2 Scripts Source
documents. Iôve compiled this information into one easy
reference so beginners can get started. This document
was last updated on 27 September, 2020.

Installing Patches and Updating Fallout 2

When you first install Fallout 2, it ma y be missing some content due to your
region or version of game. To begin creating your own mods, an amazing
programmer named Killap developed a Restoration Project to add back missing
content and fix bugs. He included source script files so that we may modify and
use the scripts as templates.

In addition to the Restoration Project files, we will also be downloading a few
more updates from other developers. At the time Iôm writing this guide, these
files are the most up to date. Download the followin g patches and programs to
begin modding Fallout 2:

Fallout 2 Restoration Project (RP) 2.3.3
(Download the Windows Installer and Script Sources)
https://www.nma -fallout.com/threads/fallout -2-restoration -project -2-3-3-

unofficial -expansion.202265/

Restoration Project Update (RPU) v16
(Download the rpu_v16.exe and the Source code (zip))
https://github.com/BGforgeNet/Fallout2_Restoration_Project/releases/tag/

v16

sfall 4.2.7
(Download sfall_4.2.7 .7z)

https://sourceforge.net/projects/sfal l/files/sfall/

https://www.nma-fallout.com/threads/fallout-2-restoration-project-2-3-3-unofficial-expansion.202265/
https://www.nma-fallout.com/threads/fallout-2-restoration-project-2-3-3-unofficial-expansion.202265/
https://github.com/BGforgeNet/Fallout2_Restoration_Project/releases/tag/v16
https://github.com/BGforgeNet/Fallout2_Restoration_Project/releases/tag/v16
https://sourceforge.net/projects/sfall/files/sfall/

P a g e | 4

(sfall) modderspack 4.2.7
(Download modderspack_4.2.7 .7z)

https://sourceforge.net/projects/sfall/files/Modders%20pack/

BIS Mapper

https://www.nma -fallout.com/resources/bis -mapper.55/

Sfall Script Editor v4.1.6

https://www.nma -fallout.com/resources/sfall -script -editor .77/

After downloading all the necessary files, we will begin installing and configuring
options.

1. Install Fallout 2

2. Use the Windows Installer version to install RP 2.3.3 over your Fallout
2 installation directory.
(Customize the options anyway youôd like)

3. Install RPU v16 over the Fallout 2 installation directory. (Make sure the
installation path is correct. It wonôt detect the directory automatically)

4. Unzip the sfall_4.2.7 file and copy/paste everything except the
ddraw.ini to your Fallout 2 install ation directory.

5. Install the BIS Mapper anywhere youôd like. (I chose to create a folder
inside Fallout 2ôs installation directory called Tools and pasted the BIS
Mapper folder in there .)

a. Open the mapper2.cfg
i. Update the following lines to the correct loc ation of your

Fallout 2 directory. Change the part in Bold :

music_path1=D: \ Games \ Fallout 2 \ data\sound\music
music_path2=D: \ Games \ Fallout 2 \ data\sound\music

critter_dat= D: \ Games \ Fallout 2 \ critter.dat
critter_patches= D: \ Games \ Fallout 2 \ data

master_dat=D: \ Games \ Fallout 2 \master.dat
master_patches=D: \ Games \ Fallout 02 \data

https://sourceforge.net/projects/sfall/files/Modders%20pack/
https://www.nma-fallout.com/resources/bis-mapper.55/
https://www.nma-fallout.com/resources/sfall-script-editor.77/

P a g e | 5

b. Open the Updated source codes folder and copy/paste
everything inside the RP 2.3.3 source codes by Killap to the
inside of the 1.02d source codes by Haenlomal folder.

c. Copy these new files from the 1.02d source codes by
Haenlomal into the BIS mapper \ scripts folder.
(This folder will be where all your scripts and programming files go)

6. Open the RP 2.3.3 Source folder and copy/paste everything over the

files in the BIS mapper \ scripts .

7. Open the RPU v16 Source 7z file and navigate to the
Fallout2_Restoration_Project -16 \ scripts_src folder. Copy/paste all
these files over to the BIS mapper \ scripts too.

8. Open your modderspack_4.2.7 7z file and navigate to the
modderspack_4.2.7 \ scripting_docs \ heade rs folder. Copy/paste all
those file to the BIS mapper \ scripts \ headers \ folder.

9. Install the Sfall Script Editor v4.1.6 (
(Install it anywhere, but I installed mine to the Fallout 2 installation
directory inside a Tools folder)

a. Navigate inside your Sfall S cript Editor installation to the
sfall_headers folder. Copy/paste all the files from this folder to
the BIS mapper \ scripts \ headers folder.

10. Open your Sfall Script Editor and edit your settings.

(Settings can be found in the Options menu if yours didnôt pop up)
Update your file path to your BIS mapper \ scripts \ Headers folder.
Headers with an ñsò. I also created a folder named Compiled to
manage the scripts Iôve created. Below is an example of what mine looks
like:

P a g e | 6

11. You may have an extra folder named head er (without the ñsò at the end)
inside your BIS mapper \ scripts folder. Copy any files from BIS
mapper \ scripts \ header to the Headers folder if you donôt already
have them in there. Do not overwrite any files in your Headers folder.

a. You may now delete the obsolete header folder.

12. Inside your Headers folder, open DEFINE.H
a. Search for the word sfall
b. Change the line from this:

#include "../sfall/sfall.h"

And edit it to this:
 #include "sfall.h"

13. We are finally finished with setup. (I would make a backup of the scripts
folder or the whole Fallout 2 folder itself before beginning to modify its
files.)

P a g e | 7

Extracting and Exploring Files For Modding

To explore Falloutôs files and prepare them for modding , you will need a .dat
extractor\viewer.

Here is the link for the dat extractor I use :

Dat Explorer by Dims 1.43

https://www.nma -fallout.com/resources/dat -explorer -by -dims.56/

After you've downloaded an extractor, create a folder and name it Extracted
Files for now. Extract all of your .dat files to this new folder, but be
sure to do it in this order:

¶ critter.dat (optional art files)

¶ master.dat
¶ f2_res.dat (optional art files)
¶ \mods\ rpu.dat
¶ sfall.dat (optional art files)

Art files are optional in this tutorial because we will not be modifying them and
they take up a bit of disk space.

Now that you have your .dat files extracted, copy/paste the contents of the
data folder (from your main Fallout 2 installation directory) to the Extracted
Files folder (Overwrite the files)

Delete your data folder from the Fallout 2 installation directory.

Rename your Extracted Files folder to data and place it in the Fallout 2 main
installation directory.

This new data folder takes priority ov er all the game .dat files. We will place all
of our new modded scripts into this folder in the future.

https://www.nma-fallout.com/resources/dat-explorer-by-dims.56/

P a g e | 8

Fallout 2 Programming

Using the Script Source Files

Inside the BIS mapper folder you now have a folder called scripts . This is
where all the fallout programming source code is stored. Also inside the scripts
folder are some helpful documents to learn the Fallout scripting language and
formatting standards.

The Docs folder contains some basic commands and help files.

The Headers folder contains a bunch of macros and command definitions to be
used in your scripts. Open up the command.h file in here if you run across a
piece of code that you don't understand.

All the other folders hold everything else from the game and are
mostly divided by what map area they are used on.

Layout

A script from Fallout 2 is broken down into several parts. The following parts are
described in the order they generally appear in a script, but a script doesnôt
necessarily need all these elements to function properly:

¶ Description

This is just some basic information about the script. Itôs useful if you've got
several scripts open at the same time. From here, you should be able to see
what the script does, whatôs been changed or added, and the date it was written
(Generally). Be sure to update it yourself when you make any changes or
anything, so you donôt forget what it does.

Comments:
The comment formatting is as follows :

 / *

This is for multiple lines of text.
This is for multiple lines of text.
This is for multiple lines of text.

P a g e | 9

*/

// This is for a single line of text.

The comments above will work in .ssl files but to add comments to a .msg file
you will use a # symbol at the beginning of the line. These are not commenting
symbols in .ssl files.

¶ # I nclude
This part of the script is to keep your .ssl from being too complicated to read.
I nclude copies/pastes large blocks of code into your script from other definition
files during compiling. Macros (mentioned below) are defined in these included
files. If your script isnôt working the way it should, be sure that youôve included
the all the right files.

Example:

 #include ".. \headers\command.h"

This would add everything from command.h to your file so that you may use
any macro from that file.

For your scripts to compile successfully, your # include lines must be placed in
the correct order in your script. The compiler that converts your code to Fallout 2
.int files will read your code from top to bottom. If the compiler comes across a
macro it hasnôt seen yet, it will immediately stop and let you know there was an
error.

¶ # Define Macro
A macro is an abbreviated set of commands. The # Define command is used to
create an abbreviated piece of code. If you have a formula youôre using a lot and
you want to m ake a change to it, you would only have to edit the coding next to
your definition . I t can also keep your scripts easier to read.

Example:

 #define money (item_caps_total(dude_obj))

Instead of writing ñ(item_caps_total(dude_obj))ò multiple times when you need
to know how much money the player has, you can see the amount by using your
defined macro: money

¶ #Define Variable
These are similar to the macros, but variables are given their own section to
keep the script more organized. This part of the script will let the compiler know

P a g e | 10

about all the variables it's going to use in advance, so the compiler doesn't get
confused when it stumbles across an unknown word.

Example:

#define LVAR_TILE (2)

The L in LVAR_TILE (2) stands for ñlocalò and the number in the parenthesis, 2 ,
is the number of the variable being used, not the value of the variable. Both
ñLVAR_TILEò and ñlocal_var(2)ò can be used to reference this variable in your
scripts.

Just make sure that when creating variables, the number in the parent hesis
reflects how many variables there are, starting with 0 and counting up. After
seeing variable LVAR_TILE (2), you can assume that there are at least 3 local
variables total (variable 0, variable 1, and variable 2).

Place the correct number in the pa renthesis to avoid errors later on. Eventually
we will register our scriptôs variables in the
ñ...\ Fallout2 \ Data \ scripts \ scripts.lstò for Fallout 2. Just remember that the
variables are numbered starting at 0 .

The above example just defined a variable, but has not set a value. By default,
all new variables are initialized to be 0 . If you would like to define and set a
variable at the same time, you can do it like this:

#define LVAR_HUNGRY(2) set_ local_var(LVAR_ HUNGRY,12);

This set our variable, ñLVAR_HUNGRYò to 12. The ñ2ò in parenthesis means that
there have been other variables defined before this variable in the script , 0 and
1.

¶ Procedure s
A procedure, also known as a function, is a group of instructions that do a
specific task. This part of the script defines all the procedures that are going to
be used later on. There are custom procedures and preset procedures.

Example:

 procedure start;
 procedure destroy_p_proc;

 procedure Node000;

This says that there will be 3 sections of the script : start , destroy_p_proc , and
Node000 .

P a g e | 11

Theyôre all case-sensitive so remember to type them in correctly .

After declaring these procedures, you now have a place that holds the actual
scripts youôre going to be writing. As stated previously, procedures are blocks of
code that perform a specific task. You can use procedures to start dialog, give
rewards, add quests to the Pip-Boy, kill someone, unlock doors, whatever.

 Some built in procedures in the game are:

procedure start;

This is supposed to be run only once at the very first time the script is run, but it
actually runs everytime the the player enters the map.

procedure critter_p_proc;

Everything in this procedure block is executed immediately and repeatedly.

procedure pickup_p_proc;

When the PC tries to use it .

procedure talk_p_proc;
When the PC tries to talk to it .

procedure destroy_p_proc;
When the object is destroyed.

procedure look_at_p_proc;

When the object gets looked at. (the mouse cursor hovers over the object)

procedure description_p_proc;

When the PC uses binoculars to get a description.

procedure use_skill_on_p_proc;

When the PC uses a skill on the object .

procedure use_obj_on_p_proc;
When the PC uses an object on it.

procedure damage_p_proc;

When object gets damaged.

procedure map_enter_p_proc;

When the map is entered and loaded.

procedure timed_event_p_proc;

Every time the timer goes off.

procedure combat_p_proc;
When fighting.

procedure push_p_proc;

P a g e | 12

When object gets pushed.

Dialog uses custom procedures so technically they can be named anything youôd
like, but t o be consistent with the rest of the scripts , just call them ñNodesò.

Example:

 procedure Node000;
 procedure Node026;

A common practice in Fallout 2 to end conversations is to use Node999 to exit
dialog. You may continue this practice but any empty procedure in your dialog
nodes/procedures will work as well.

Variables

Variables are containers that store data. Variables can hold data like numbers or
strings of characters. These variables can then be accessed, changed, or used in
comparisons.

Temporary Variables are defined within a script and are often used to make a
couple quick calculations. Since these are only temporary, these variables aren't
saved.

Local Variables can be used to keep track of calculations and store information
only locally within the script.

For example, an NPC using a local variable could remember if theyôve met the
player before.

Map Variables are numbers that are stored on a single map instead of locally
within an NPCôs script.

For example: An NPC standing nearby could ask you to unlock a door for them.
If you open it, the map variable reserved for that door would change its value.
The NPC could access that variable to know if you completed your task.

Map variables are accessible to any script running on the same map.

Global variables are values that are stored and can be accessed at any time
and place in the game. In the example given in the map variable section, if we
used a global variable to check on the doorôs status, our NPC could check on that
door from a different map location.

P a g e | 13

Global variables are always in the memory and can be accessed at any time but
they take up a little bit of running memory. Use the right variable for the right
situation.

An example of a global variable is a quest status on the Pip-Boy. Players can
check at any time if a quest has been completed without having to be on the
same map.

Booleans and Operators

Booleans, or Boolean values, are obtained by checking whether an expression is
true or false. In programming logic, 0 is always false and anything that isnôt 0 is
true. You can obtain these values with the following operators:

 > Greater than

< Lesser than
>= Greater than or equal to

 <= Lesser than or equal to

 == Equals

!= Not Equal to

&& And
|| Or
! Not

Example:

 procedure start begin

if (local_var(1) == 0) then begin
set_local_var(1,5);

end
end

This block of code is using a Boolean to see whether the statement is true or
false. If itôs true, then it performs the next block or line of code immediately
preceding it.

So, this above example is asking, ñIs it true that variable(1) has a value equal to
0? If that is true, then set variable(1) ôs value to 5.ò

You can also check multiple conditions by using && and || .

Example:

P a g e | 14

procedure start begin

I f ((local_var(1) == 0) && (local_var(2) > 5)) then begin
call talk_p_proc;

end
end

This example asks, ñIs it true that variable(1) equals 0, and is it also true that
variable(2) is greater than 5? If so, then start ñtalk_p_procedureò.

With Booleans, you can check to see if a player has completed a specific quest,
has an item, or if they have been there before.

Macros and Commands

All the commands used are listed inside of the Headers and Docs folder.

Like we explained above, a macro is an abbreviation for a set of commands,
saved as a keyword. They are ñdefinedò at the beginning of the script or in
header files. If youôve added all the necessary # include statements at the
beginning of your script , then you will have access to many time-saving macros.

Instead of writing everything in this procedure like this :

procedure look_at_p_proc begin

if ((Current_Distance_From_Dude < 8) or (self_can_see_dude)) then begin

flee_from_tile(dude_tile) ;
end

end

Instead, everything in bold can be written like this :

procedure look_at_p_proc begin

Flee_From_Dude ;

 end

The Flee_From_Dude command is the same as that line of code in the first
example. Fortunately for us, Flee_From_Dude was defined in command.h as
a macro shortcut we can use.

The command.h file has many macro shortcuts available, but you can make
you own as well. Just look at the examples in the header files to get comfortable
with their syntax.

P a g e | 15

Compiling

If youôve completed all the steps in the Getting
Started section of this guide, you should have
a properly configured Sfall Script Editor
v4.1.6

To compile a script, open an .ssl file.

(You may choose an existing file from your
BIS mapper \ scripts folder to conduct a test.

Choose a script from one of the map folders. In
my test, I used ACJORDAN.SSL from the ARROYO folder.)

After your .ssl file is loaded, click on the Compile button or Press F8 to have
the .ssl script turned into an .int file. It will be placed in the folder you
configured earlier from the settings menu.

If there are no errors in your script, you will see a message that reads,
ñSuccessfully Completedò.

P a g e | 16

Creating an NPC

For a script to run, it has to be attached to prototype person, place, or thing
inside Fallout 2.

We will create a female NPC to use as an example. Iôm going to name her Mary.

Mary (Part 1)

To create an NPC or ñcritterò, we will be using the mapper2 .exe tool located in
your BIS mapper folder.

The mapper2 program allows you to create new maps, items, critters, and
other prototypes.

Start your mapper. If an error message occurs, verify that you have the correct
file paths in your mapper2.cfg

On the bottom left corner there will be a box that says Tiles . Left-click and hold
the mouse button to reveal more categories. Select the Critters category.

Now there will be a lot of people on the bottom of the screen . I f you hover over
them with your mouse, youôll see their critter names in the bottom right corner.

Use the red arrows to the right side of the critters to find a female Village r . If
you want to, you can use anyone that doesnôt have ñHeroò in its name. ñHeroò is
the actual playerôs base character sprite and will cause errors if you use them.

P a g e | 17

We donôt want to edit the base critter Villager , we are going to place a copy of
this NPC critter to a map level and attach our script to it.

Letôs load map level. Move your mouse to just under the top edge of the screen
until a control bar appears. Now go to File -> Open -> artemple.map , and
then click Done . This is the very first map tha t loads when you start a new game
in Fallout 2.

Right-click your critter to select it . Now rotate your critter to face the screen , by
clicking the purple arrows in the middle of the bottom tool bar until it displays
the number 2.

Next, weôll left-click the critter onto the map . Choose a spot near the fire and
stairs.

P a g e | 18

Save and close the mapper. We
will now start creating our script.

Consistent Dialog

Here are some guidelines to follow for writing consistent Fallout 2 dialog:

¶ When you want to describe something like performing an action you
wouldnôt normally be able to do, or when you just want to continue the
dialog, write it in [brackets] .

 [Show him the book.], [Take apart the computer.], or [Continue]

¶ When you want to show something being done without describing it you
should use *asterisks*.

cough, *hiccup*, or *sniff -sniff*

¶ US and Britain spell things differently. To be consistent with the rest of
the Fallout NPCôs, you should also spell all words the American-English
way. Sometimes, it can be a little hard to remember.

For instance, writing "color" instead of "colour", "armor" instead of
"armour", ñdialogò instead of ñdialogueò etc.

¶ Don't give the player any accents and try to keep the dialog pretty
neutral. Let the player have a choice on how they want to play their
character. Don't force them.

P a g e | 19

¶ Remember to give the player some ñdumbò dialog choices too, for a low
intelligence score.

¶ OK, ok, O.K., okay or O-kay? It's been decided that "okay", will be the
correct spelling in Fallout 2.

¶ No player or NPC dialog should end by trailing off into dots ñ...ò. You can
use a fade transition in your scripts to show time has passed, if thatôs
what youôre after.

¶ No fighting or action options you would normally be able to do without

dialog.

 [You punch the guy in the nose.] , [You pick up the armor.]

Dialog .msg Files

To write dialog for a character you will need two files, the actual script
controlling everything and a file holding the all the dialog text. Both the script
and the dialog text file will be editable in Note pad and must have the same
name, but theyôll end with the different extensions.

The script controlling the actual dialog will end with an ñ.sslò (if it hasnôt been
compiled) or an ñ.intò extension (if it has been compiled).

The dialog text file, containing all dialog displayed, will end with an ñ.msgò
extension.

Here is an example of what can be found inside of a dialog ñ.msgò file:

{100}{}{Good morning!}

{101}{}{Good morning, to you!}
{102}{}{Go odbye!}

{103}{}{My nameôs Ray.}
{104}{}{Nice to meet you.}

It doesn't matter in what order the lines are, or what numbers are used, but the
numbers must be unique for each line of dialogue. Using these numbers, the
script will determine which line(s) of d ialogue to show at any given moment.

You can make your dialog file easy to read if you keep everything in groups and
sections. For example, keep all floating dialog in the 100ôs, regular dialog in the
200ôs, all the quest dialog in the 300ôs, etc. It doesnôt matter what numbers
you use. Itôs just easier to keep track of everything.

P a g e | 20

Dialog .int Files

The first thing you'll need in the script for dialog, besides the # include and
#define sections, is the talk_p_proc procedure. This procedure will get called
when the player tries to initiate dialog with the critter.

Here are a couple different talk procedure s:

Example 1 with just commands:

procedure talk_p_proc begin

 start_gdialog(NAME,self_obj,4, -1, -1);
 gSay_Start;

 call Node001;

 gSay_E nd;
 end_dialogue;

end

Example 2 with a macro:

Procedure talk_p_proc begin

 start_dialog_at_node(Node001);

end

The second talk procedure macro has been defined in the command.h file, in
the Headers folder. It does the same thing as example 1.

As soon as the dialog procedure is activated in these examples, the script sends
us to ñNode001ò. Letôs see the procedure called ñNode001ò:

procedure Node001 begin

 Reply(100);
 NOption(101,Node999,004);

 NOption(102,Node999,006);
end

The line Reply(100) means that the NPC will speak this line in the text file that
is numbered 100. The lines, NOption(101, Node999, 00 4) and
NOption(10 2, Node999, 00 6) mean that the player has the option to speak
the line that is numbered 101 or 102 from the .msg file. Thatôs if he or she has
an intelligence equal or greater than 004 and/or 006. I f either option is chosen, it
will send the dialog to the next procedure , ñNode999ò.

Here is an example Node999 procedure that ends dialog:

procedure Node999 begin
end

P a g e | 21

Node999 doesnôt have any code inside its procedure. If a dialog node/procedure
is empty, then the dialog will exit . You can name your dialog exiting procedure
anything youôd like, but Fallout 2 uses Node999 for consistency.

Now that weôve learned how it works, letôs expand:

procedure Node001 begin

 Reply(100);
 NOption(101,Node002, 006);

 NOption(102,Node999, 004);
end

Here weôve changed the first dialog option to go to Node002 instead of just
ending a conversation. Now letôs create Node002:

procedure Node 002 begin
 Reply(103);

 NOption(104, Node999, 004);
end

Now, Node001 gives the player the option to say line 101 if his intelligence is
equal or greater than 6 .

If he or she speaks that line, Node002 will be called, which will result in the NPC
speaking line 103 .

After that, the player can only choose to say line 104 from Node002. If that
option is selected, it will go to Node999 , ending the conversation.

Writing dialog is all about connecting the different procedures or nodes in a
dialog tree.

Customizing Dialog Files and Procedures

As mentioned in previous sections, not all of your dialog procedures have to be
named like ñNode001ò. You can also make your own custom procedure groups,
but when naming them, they have to follow some rules:

¶ The first character can't be a number.
¶ There can't be any spaces in the name. Instead, use an underscore ñ_ò.
¶ Besides the underscore, No special characters like: ñ$ & #ò, etc.

Examples:

ñA_B_C_8234ò is a valid node name.

P a g e | 22

ñ1_ABCò is not .

Usually for writing generic dialog it's best to use something like ñNode000ò, with
the ñ000ò part being any number you want, but f or special dialog procedures,
name it something like ñNode_give_rewardò. This helps you better organize and
understand your script if you come back to it at a later date .

In addition to customizing procedures, if you donôt want your script to use an
.msg file with a matching file name, you donôt have to.

If you are planning to have multiple scripts using the same dialog file and you
donôt want to make a bunch of duplicates for each script, there is a way to define
what .msg file will be used for the script. To define the .msg file to be used,
you need to insert these lines into your procedure script:

script_overrides;
message_str(SCRIPT_X,Y);

In the above lines of code, X is the name of your .msg file (without the
extension) and Y is the line number.

Here is an example of it being used:

procedure Node002 begin

script_overrides;
 Reply(message_str(SCRIPT_GENERIC,103));

 NOption(message_str(S CRIPT_GENERIC, 104) , Node999, 004);
 end

This would take the dialog lines out of the generic.msg file, instead of a file
matching the scriptôs .ssl name.

Mary (Part 2)

Now let us create some dialog for Mary.

Open up a text editing program such as Notep ad and create 2 new files.
Save them as:

acmary.ssl
acmary.msg

Donôt worry about copying bits and pieces of the following code to your files as I
explain. At the end of each section I will provide the current .ssl script and .msg
dialog code. For now, follow along and learn about the process of writing the
script.

P a g e | 23

For the first file, acmary.ssl , we start with a description at the top using a
comment block.

/*

 Name: Mary

 Location: Arroyo (artemple.map)
 Description: Our tutorial NPC

*/

Next, we will include some header files to gain access to some time saving
macros and to successfully compile our script.

#define SCRIPT_REALNAME "acmary"

#include ".. \headers\define.h"
#define NAME SCRIPT_ACMARY

#include ".. \headers\command.h"

Then we list all the procedures weôre going to use in Maryôs script.

Weôre adding the ability to get a description of Mary when we hover our mouse
or use the binoculars thing on her. Weôre also going to give Mary the ability to
speak to the player .

procedure start; //This procedure is required to compile correctly

procedure look_at_p_proc; //Activates when the player hovers over Mary with the cursor

procedure description_p_proc; //Activates when the player tries getting a description of Mary

procedure talk_p_proc; //Activates when the player attempts to talk to Mary

procedure Dialogue_start; // Initializes dialog screen
procedure Node001; //Actual Dialog

procedure Node999; //Ends Dialog

In our acmary.msg file, we add some text for the description of Mary:

{10}{}{You see an attractive young woman.}

{20}{}{You see Mary .}

Back in the acmary.ssl file, I add the following under the procedures that have
been defined so far. I will begin to write the actual procedure code:

//when the script starts

procedure start begin
end

P a g e | 24

//hovered description

procedure look_at_p_ proc begin
script_overrides;

display_msg(mstr(10));
end

//binocular description
procedure description_p_proc begin

script_overrides;
display_msg(mstr(20));

end

Now Mary wonôt show up as Vil lager when we look at her . She also has a
detailed description when we use our search skill.

Letôs continue by adding some dialog options.

//Player uses dialog option on NPC
procedure talk_p_proc begin

call Dialogue_start; //Go to the ñDialogue_startò procedure
end

//Initialize the dialog box
procedure Dialogue_start begin

start_gdialog(NAME,self_obj,4,-1,-1);
gSay_Start;

call Node001; //Display Actual Dialog

gSay_End;
end_dialogue;

end

//Actual Dialog Displayed

procedure Node001 begin
Reply(100);

NOption(200,Node999,001); //Ends Dialog
NOption(201,Node999,001); //Ends Dialog

end

// Ends dialog

procedure Node999 begin
end

As you can see, when the player attempts to talk to Mary, the script initializes
and brings up the dialog screen. Node001 controls the text spoken.

We Switch back to acmary.msg and add some more lines of dialog:

{ 100}{}{Hi, how's it going? Iôm Mary.}

{ 200}{}{ Itôs going great!}

{ 201}{}{ Nice to meet you Mary. See you later.}

P a g e | 25

Here is the complete script for acmary.ssl for Mary (P art 2)

/*

 Name: Mary

 Location: Arroyo (artemple.map)
 Description: Our tutorial NPC (Part 2)

*/

#define SCRIPT_REALNAME "acmary"

#include ".. \headers\define.h"
#define NAME SCRIPT_ACMARY

#include ".. \headers\command.h"

procedure start; //This procedure is required to compile correctly

procedure look_at_p_proc; //Activates when the player hovers over Mary with the cursor

procedure description_p_proc; //Activates when the player tries getting a description of Mary

procedure talk_p_proc; //Activates when the player attempts to talk to Mary
procedure Dialogue_start; //Initializes dialog screen

procedure Node001; //Actual Dialog

procedure Node999; //Ends Dialog

//when the script starts

procedure start begin
end

//hovered description

procedure look_at_p_ proc begin
script_overrides;

display_msg(mstr(10));
end

//binocular description
procedure description_p_proc begin

script_overrides;
display_msg(mstr(20));

end

//Player uses dialog option on NPC

procedure talk_p_proc begin
call Dialogue_start; //Go to the ñDialogue_startò procedure

end

//Initialize the dialog box

procedure Dialogue_start begin
start_gdialog(NAME,self_obj,4,-1,-1);

gSay_Start;

call Node001; //Display Actual Dialog
gSay_End;

end_dialogue;

P a g e | 26

end

//Actual Dia log Displayed

procedure Node001 begin
Reply(100);

NOption(200,Node999,001); //Ends Dialog

NOption(201,Node999,001); //Ends Dialog
end

//Ends dialog

procedure Node999 begin
end

Here is the complete dialog for acmary.msg for Mary (P art 2)

#Description when you look at Mary
{10}{}{You see an attractive young woman.}

{20}{}{You see Mary.}

#Dialog

{100}{}{Hi, how's it going? I'm Mary.}

{200}{}{It's going great!}
{201}{}{Nice to meet you Mary. See you later.}

These next steps will seem a little overwhelming at first, but Iôll do my best to
walk you along. For future reference, Iôve created an NPC Checklist section at
the end of this guide to speed up the process. Take a glance at it to preview
what weôre going to be doing.

To compile acmary.ssl , we now have to add this file to a list in the
é\ Scripts \ Headers \ scripts.h file. Open it up and scroll down to the end of the
list. Under the last entry, add one for Mary. For me, my last entry was 1558, so
Iôm going to put my script underneath and increment the number to 1559 :

#define SCRIPT_ACMARY (1559) // acmary.int ; Mary

The next step is to actually compile acmary.ssl , following the directions on
page 15 of this guide.

After successfully compiling acmary.ssl , find acmary.int where your configured
your compiled scripts to go.

P a g e | 27

Copy and paste acmary.int into your é\ Fallout2 \ Data \ Scripts \ folder.

There is a text file in this folder called scripts.lst .
Add an entry to the very bottom of this file. My entry looks like this:

acmary.int ; Mary # local_vars= 0

ñMaryò is the script description/comment for us. Weôll see it in the mapper2
program. We didnôt use any variables in this script, so we set the number of used
local_vars to 0.

Next, weôre going to go to the
é\ Fallout 2\ Data \ Text \ Engl ish \ Game \ scrname.msg file and add one last
entry to the bottom. This is so Maryôs name displays correctly during combat.
Mine looks like this:

{1412}{}{ Mary } # acmary.int ; Mary

The ñMaryò in bold is the name of the critter. The ñMaryò after the semi-colon is
a comment for programmers.

Next, copy the acmary.msg from the Testing folder to the
é\ Fallout 2\ Data \ Text \ English \ Dialog \ folder.

Alright, now to start up mapper2 load up our artemple.map .

Select the critters category again to gain access to Mary. Once youôve done that,
select her by clicking her. Youôll know sheôs selected when she has a red hexagon
around her feet. After that, click the edit button on the bottom bar to bring up a
menu. Weôre finally going to attach our script to her by cli cking New Script ->
acmary.int -> Done .

P a g e | 28

Click Done, Save the map, and Exit the mapper.

P a g e | 29

We can now start a new game and see how Maryôs doing.

Start your fallout2.exe , create a new game and visit Mary.

Mary now has a tiny bit of personality, but sheôd be cooler if she gave us
experience points and money. Letôs now learn about making quests!

P a g e | 30

Quests on the Pip-Boy

Placing quest stats onto the Pip-Boy involves 3 files.

...\ Fallout 2\ Data \ Data \ vault13.gam

(This file registers new global variables)

... \ Fallout 2\ Data \ Data \ quests.txt

(This file contains all quests in the game.)

Example:

 # Kill Augustus, the town drunk

 15 00, 160 , 791 , 1, 3

is the line containing a description of the quest.
This isnôt shown to the player.

15 00 is the town number . The town numbers are in:
 ... \ Fallout 2\ Data \ Text \ English \ Game \ map.msg
It's Arroyo, in this case.

160 is the quest number. I t references this file:
 ... \ Fallout 2\ Data \ Text \ English \ Game \ quests.msg

791 is the global variable number from this file:
... \ Fallout 2\ Data \ Data \ vault13.gam

1 is the minimum value you must set the global variable in order to have the
quest displayed on the Pip-Boy.

3 is the minimum value you must set the global variable in order to have the
quest completed. If itôs completed, its name will get crossed off on the Pip-Boy

... \ Fallout 2\ Data \ Text \ English \ Game \ quests.msg

This file has the Pip-Boy description thatôs going to be shown to the player. It will
look something like this:

{160}{}{Kill Augustus, the town drunk.}

160 is the number of the quest, the rest is the quest description.

P a g e | 31

Mary (Part 3)

Now that we understand the basics of creating quests, letôs use Mary to create
our own.

For this quest, we will need 1 global variable, 1 local variable, and weôll also use
the Pip-Boy. You can either use the NPC Checklist section of this guide, or
follow the bullets.

¶ In ... \ Fallout 2\ Data \ Data \ vault13.gam , I added:

GVAR_BEERRUN :=0; // (791)

BEERRUN will be our global variable and we set it to 0 on initialization.
Lastly, 791 is the number of the variable. For me, 790 was the previous
variable in the list.

¶ In ... \ Fallout 2\ Data \ Data \ quests.txt , I added:

Bring Mary Booze

1500, 150, 791, 1, 2

¶ In ... \ Fallout 2\ Data \ Text \ English \ Game \ quests .msg , I added:

{150}{}{B ring Mary 12 beers.}

¶ In ... \ BIS Mapper \ Scripts \ Headers \ global.h , I added:

#define GVAR_BEERRUN (791)

¶ In ... \ Fallout 2\ Data \ Scripts \ scripts.lst , I changed the local variable on
Maryôs line, because we are using 1 . It looks l ike this now:

acmary.int ; Mary # local_vars= 1

Now that everythingôs been referenced and allocated space, letôs open up
acmary.ssl and acmary.msg .

Read my comments in the script for an explanation of whatôs happening. We will
add new procedures and more dialog to start our quest for Mary .

P a g e | 32

Starting with acmary. msg , copy and paste the following into your file :

DESCRIPTION BOX

{10}{}{You see an attractive young woman.}
{20}{}{You see Mary.}

{30}{}{You completed your beer run.}

NORMAL DIALOG

{300}{}{Hi, how's it going?}

{310}{}{It's alright. How are you?}

{311}{}{I was just stopping by to say hello.}
{312}{}{Do you have anything interesting going on later?}

{315}{}{I'm good. So um, what do you want?}

{316}{}{Oh, hello.}
{317}{}{Not rea lly. I might hang out with some friends.}

{320}{}{That sounds fun.}
{321}{}{Oh, okay. Never mind then.}

{322}{}{So what's the problem?}
{323}{}{Would you like me to pick you up some beer?}

{324}{}{Gecko blood?! You seriously don't have any problems drinki ng fermented gecko blood?
That's disgusting!}

{325}{}{Not really. What I'd really like to do is get drunk. But all there is to drink is fermented

gecko blood.}
{327}{}{Beer? Yeah, that'd be great! Oh, but the next caravan doesn't come around for a while.}

{399}{}{See you later.}

QUEST DIALOG

{900}{}{I could pick you up a 12 pack while I'm in Klamath.}
{901}{}{Did you get the beer?}

{910}{}{Really? Great! Bring me back 12 beers and I'll pay you back. Thanks a lot!}

{920}{}{Sorry, I don't have it yet. }

{925}{}{I don't have it yet, but I'm working on it.}
{930}{}{Here you go.}

{935}{}{I have some beer, but I need it more than you do.}

{940}{}{Thanks a lot! Here take this.}

{941}{}{Hey, thanks again for the beer. I think I'm gonna take it easy from now on. I 'm so sick.}

Next, copy and paste the following in your acmary.ssl file.

/*

P a g e | 33

 Name: Mary

 Location: Arroyo (artemple.map)
 Description: Mary and her beer quest.

*/

/******************** DEFINITIONS ********************/

#def ine SCRIPT_REALNAME "acmary"

#include ".. \headers\define.h"
#define NAME SCRIPT_ACMARY

#include ".. \headers\command.h"

// This procedure is required to compile

procedure start;

// Activates when the player hovers over Mary with the cursor
procedure look_at_p_proc;

// Activates when the player tries getting a description of Mary with Binoculars

procedure description_p_proc;

// Activates when the player attempts to talk to Mary
procedure talk_p_proc;

procedure Dialogue_start; //Starts Dialog
procedure Node999; //Ends Dialog

// Actual Dialog
procedure Node001a;

procedure Node001b;
procedure Node002;

procedure Node002a;

procedure Node002b;
procedure Node003;

procedure Node003a;
procedure Node003b;

procedure Node003c;

// Check if carrying quest item

procedure quest001;
//Remove the quest item

procedure quest002;

// Reward the player

procedure Treasure_Chest;

/*
We are going to define our first local variable for keeping track of the questôs status! All local

variables that havenôt been assigned anything, are assigned 0 as the default value. So, our first

local variable LVAR_QUEST (0) is equal to 0.
*/

#define LVAR_QUEST (0)

/ ******************** PROCEDURES ********************/

P a g e | 34

// Required

procedure start begin
end

// Hovered description
procedure look_at_p_proc begin

script_overrides;
display_msg(mstr(10));

end

// Binocular description

procedure description_p_proc begin
script_overrides;

display_msg(mstr(20));
end

// Player uses dialog option on Mary
procedure talk_p_proc begin

call Dialogue_start;
end

// Initialize the dialog box

procedure Dialogue_start begin

start_gdialog(NAME,self_obj,4,-1,-1);
gSay_Start;

/* This part checks the status of the quest. If Mary didnôt tell us about it, local_var(0) will still

be equal to 0. */

if (local_var(0) == 0) then

 call Node001a; // if quest hasn't started
else if (local_var(0) == 1) then

 call quest001; // if quest is in progress

else if (local_var(0) == 2) then
 call Node001b; // if quest has been completed

gSay_End;

end_dialogue;
end

// Quest hasnôt started yet
procedure Node001 a begin

// Mary says, ñHi, how's it going?ò

Reply(300);

// Playerôs dialog options
NOption(310,Node002,002); // òItôs alright. How are you?ò (Continue)

NOption(399,Node999,002); // òSee you later.ò (Exit dialogue)
end

//Quest Completed

P a g e | 35

procedure Node001b begin

// Mary says, ñHey, thanks again for the beeréò
 Reply(941);

// Playerôs dialog options
NOption(399,Node999,002); // òSee you later.ò (Exit dialogue)

end

procedure Node002 begin

// Mary says, ñThat's good. So um, what do you want?ò
Reply(315);

// Playerôs dialog options
NOption(311,Node002a,002); // ñI was just stopping bye to say hello.ò

NOption(312,Node002b,002); // ñDo you have anything interesting going on later?ò

NOption(399,Node999,002); // ñSee you later.ò
end

procedure Node002a begin

// Mary says, ñOh, Hello.ò

Reply(316);
// Playerôs dialog options

NOption(399,Node999,002); // ñSee you later.ò
end

procedure Node002b begin

// Mary says, ñNot really. I might hang out with some friends.ò

Reply(317);
// Playerôs dialog options

NOption(320,Node003,002); // òThat sounds fun.ò
NOption(321,Node999,002); // òOh, okay never mind then.ò (Exit dialog)

end

procedure Node003 begin

// Mary says, ñNot really. What I'd really like to do is get drunkéò
Reply(325);

// Playerôs dialog options

NOption(322,Node003c,002); // ñSo what's the problem?ò
end

procedure Node003a begin

// Mary says, ñBeer? Yeah, that'd be great!...ò
Reply(327);

// We are now going to change the global variable "791" to 1,

// to make it show up on the Pip-Boy.
set_global_var(791,1);

// Set our local variable to let Mary remember that our quest is currently in progress.
set_local_var(0,1);

// Playerôs dialog options

NOption(900,Node003b,002); // ñI could pick you up a 12 pack while I'm in Klamath.ò
end

procedure Node003b begin

// Mary says, ñReally? Great! Bring me back 12 beerséò
Reply(910);

P a g e | 36

// Playerôs dialog options

NOption(399,Node999,002); // ñSee you later.ò
end

procedure Node003 c begin

// Mary says, ñGecko blood?!...ò

Reply(324);
// Playerôs dialog options

NOption(323,Node003a,002); // ñWould you like me to pick you up some beer?ò
end

// Check if quest can be completed

procedure quest001 begin

// Mary says, ñDid you get the beer?ò
Reply(901);

/* Check if player has e nough beer.

In the é\Fallout 2\ Scripts \ Headers \ folder, ItemPid.txt has a reference number for each
item. In this case, beer is numbered 124 . */

if (obj_is_carrying_obj_pid(dude_obj, 124) >= 12) then // If there are at least 12 beers, thené

 begin
 // Playerôs dialog options

 NOption(930,quest002,002); // Give beer and continue

 NOption(935,Node999,002); // Exit dialog
 end

 else // If the player doesnôt have enough beer, show alternate dialog choices
 begin

 NOption(920,Node999,002);

 NOption(925,Node999,002);
 end

end

// Complete the quest

procedure quest002 begin

set_local_var(0,2); // Set our local variable to show the quest is complete
set_global_var(791,2); // Cross the quest out on the Pip-Boy

// Remove 12 beers from the player. Iôm not sure why, but this line must

// not end with a semi -colon

remove_pid_qty(dude_obj, 124, 1 2)

call Treasure_Chest; // Give the player a reward

// Fade in and out to show time has passed

gfade_out(1);
game_time_advance_hour(12); // Advance the clock 12 hours

gfade_in(1);

// Mary says, ñThanks a lot! Here take this.ò
Reply(940);

P a g e | 37

NOption(399,Node999,002); // ñSee you later.ò

end

procedure Treasure_Chest begin
/*

In this procedure, you can set the amount of experience and change what rewards the NPC gives

you for solving tasks.
*/

script_overrides;
give_xp(100); // Player gets 100 experience points

item_caps_adjust(dude_obj,100); // Player gets 100 money
display_msg(mstr(30)); // Show message in description box

end

// End dialog

procedure Node999 begin
end

To test out if our quest works correctly we need to have some beer available to
our player. Start mapper2 and load up artemple.map . Select the ñItemsò
category and search for a Footlocker .

Right-click the foot lockerôs thumbnail and left-click it on to the map to place it.
After placing it, left -click it again until it gets highlighted with a red hexagon.
Now click Edit -> Add to Inven and scroll until you get to a picture of some
beer. Click the beer picture 14 times, to add 14 beers. You wonôt see an
animation of the button getting clicked, but the beers are getting added to the
container. Choose View Inventory on the edit screen to view the footlockerôs
inventory. After you finish, save the map and exit mapper2 .

P a g e | 38

Now save both acmary files and compile the .ssl script again. Place the new
acmary.int into your éFallout 2\ data \ scripts \ folder and your new
acmary.msg into your éFallout 2\ data \ text \ english \ dialog folder.

To get your Pip-boy early and see the quest status of our new mod, open the
ddraw.ini file from the main Fallout 2 folder , use CTRL-F to search for ñpipò
and change the Pip-boy option to 1 . It will look like this after you change it:

PipBoyAvailableAtGameStart=1

Now you can begin testing your Mary mod! Start a new game and give her some
beer. Take a look at your Pip-Boy quests to see the status change.

